Elevated CO2 alters distribution of nodal leaf area and enhances nitrogen uptake contributing to yield increase of soybean cultivars grown in Mollisols

نویسندگان

  • Jian Jin
  • Yansheng Li
  • Xiaobing Liu
  • Guanghua Wang
  • Caixian Tang
  • Zhenhua Yu
  • Xiaojuan Wang
  • Stephen J. Herbert
چکیده

Understanding how elevated CO2 affects dynamics of nodal leaf growth and N assimilation is crucial for the construction of high-yielding canopy via breeding and N management to cope with the future climate change. Two soybean cultivars were grown in two Mollisols differing in soil organic carbon (SOC), and exposed to ambient CO2 (380 ppm) or elevated CO2 (580 ppm) throughout the growth stages. Elevated CO2 induced 4-5 more nodes, and nearly doubled the number of branches. Leaf area duration at the upper nodes from R5 to R6 was 4.3-fold greater and that on branches 2.4-fold higher under elevated CO2 than ambient CO2, irrespective of cultivar and soil type. As a result, elevated CO2 markedly increased the number of pods and seeds at these corresponding positions. The yield response to elevated CO2 varied between the cultivars but not soils. The cultivar-specific response was likely attributed to N content per unit leaf area, the capacity of C sink in seeds and N assimilation. Elevated CO2 did not change protein concentration in seeds of either cultivar. These results indicate that elevated CO2 increases leaf area towards the upper nodes and branches which in turn contributes yield increase.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Elevated CO2 Increases Nitrogen Fixation at the Reproductive Phase Contributing to Various Yield Responses of Soybean Cultivars

Nitrogen deficiency limits crop performance under elevated CO2 (eCO2), depending on the ability of plant N uptake. However, the dynamics and redistribution of N2 fixation, and fertilizer and soil N use in legumes under eCO2 have been little studied. Such an investigation is essential to improve the adaptability of legumes to climate change. We took advantage of genotype-specific responses of so...

متن کامل

PLANTÐINSECT INTERACTIONS Anthropogenic Changes in Tropospheric Composition Increase Susceptibility of Soybean to Insect Herbivory

Increased concentrations of CO2 and ozone are predicted to lower nutritional quality of leaves for insect herbivores, which may increase herbivory as insects eat more to meet their nutritional demands. To test this prediction, we measured levels of herbivory in soybean grown in ambient air and air enriched with CO2 or O3 using free air gas concentration enrichment (FACE). Under open-air conditi...

متن کامل

The effect of chemical and biological fertilizers on leaf characteristics, yield and nutrient uptake and consumption efficiency, phosphorus and sulfur in Camelina sativa L.

The aim of this study was to investigate the effect of chemical fertilizers of nitrogen, phosphorus, sulfur and biofertilizer on some growth indicators of Camelina sativa L. experimental plant during the crop year 2016 in a farm located in Kazerun and as a factorial in the form of complete randomized block design with three replications. Treatments include fertile biofertilizer 2 containing pho...

متن کامل

Agronomic and physiological assessment of nitrogen use, uptake and acquisition in sunflower

A field experiment was conducted to study the effects of N fertilization on uptake,accumulation/remobilization, use efficiency and yield of sunflower grown in alluvial plains ofnorthwestern India comprising four hybrids (PSH 996, PAC 3789, PSH 569 and SH 3322)and five N levels (Control, 40, 80, 100 and 120 kg N ha-1) in split-plot design with threereplications. Increased N fertilizer rates sign...

متن کامل

Decreasing, not increasing, leaf area will raise crop yields under global atmospheric change

Without new innovations, present rates of increase in yields of food crops globally are inadequate to meet the projected rising food demand for 2050 and beyond. A prevailing response of crops to rising [CO2 ] is an increase in leaf area. This is especially marked in soybean, the world's fourth largest food crop in terms of seed production, and the most important vegetable protein source. Is thi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2017